Infinite Order of Growth of Solutions of Second Order Linear Differential Equations
نویسندگان
چکیده
We consider the di?erential equation f<sup>''</sup> +A(z)f<sup>'</sup> +B(z)f = 0, where A(z) and B(z) are entire complex functions. improve various restrictions on coe?cients prove that all non-trivial solutions of in?nite order.
منابع مشابه
On the stability of linear differential equations of second order
The aim of this paper is to investigate the Hyers-Ulam stability of the linear differential equation$$y''(x)+alpha y'(x)+beta y(x)=f(x)$$in general case, where $yin C^2[a,b],$ $fin C[a,b]$ and $-infty
متن کاملNonrectifiable Oscillatory Solutions of Second Order Linear Differential Equations
The second order linear differential equation (p(x)y′)′ + q(x)y = 0 , x ∈ (0, x0] is considered, where p, q ∈ C1(0, x0], p(x) > 0, q(x) > 0 for x ∈ (0, x0]. Sufficient conditions are established for every nontrivial solutions to be nonrectifiable oscillatory near x = 0 without the Hartman–Wintner condition.
متن کاملOn Approximate Solutions of Second-Order Linear Partial Differential Equations
In this paper, a Chebyshev polynomial approximation for the solution of second-order partial differential equations with two variables and variable coefficients is given. Also, Chebyshev matrix is introduced. This method is based on taking the truncated Chebyshev expansions of the functions in the partial differential equations. Hence, the result matrix equation can be solved and approximate va...
متن کاملGrowth of Solutions to Second-order Complex Differential Equations
In this article, we study the existence of non-trivial subnormal solutions for second-order linear differential equations. We show that under certain conditions some differential equations do not have subnormal solutions, also that the hyper-order of every solution equals one.
متن کاملGrowth of meromorphic solutions of higher-order linear differential equations
Abstract. In this paper, we investigate the higher-order linear differential equations with meromorphic coefficients. We improve and extend a result of M.S. Liu and C.L. Yuan, by using the estimates for the logarithmic derivative of a transcendental meromorphic function due to Gundersen, and the extended Winman-Valiron theory which proved by J. Wang and H.X. Yi. In addition, we also consider th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Indian Mathematical Society
سال: 2022
ISSN: ['0019-5839', '2455-6475']
DOI: https://doi.org/10.18311/jims/2022/26751